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The Magneto-hydrodynamic (MHD) 
Energy Bypass Engine

Schematic of some of the technologies envisioned in 
the AJAX

1) Fraishtadt, V.L., Kuranov, A.L., and Sheikin, E.G., “Use of MHD Systems in 
Hypersonic Aircraft,” Technical Physics, Vol. 43, No.11, 1998, p.1309.
2) Gurijanov, E.P., and Harsha, P. T., “AJAX: New Directions in Hypersonic 
Technology,” AIAA Paper 96-4609, 1996.
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Analytical Model

Assumptions:
One-dimensional steady state flow
Inviscid flow
No reactive chemistry
Low Magnetic Reynolds number

‘x-t’ equivalence



Flow Equations

Continuity Equation:

Force Equation:
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uAd ρ x - coordinate along the channel
ρ - Fluid density
u - Fluid velocity
A - Channel cross-section area
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P - Fluid pressure
k - Load factor
σ - Fluid conductivity
B - Magnetic field



Flow Equations...
Energy Equation:

Continuity Equation for the electron number 
density:

ε- - Fluid internal energy
Qβ - Energy deposited by

the e-beam

ne - Electron number density
jb - Electron beam current
ε-b - E-beam energy
Z- Channel width
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The Role of Control

Electron beam current as the control element
Maximizing energy extraction while minimizing 
energy spent on the e-beam ionization
Minimizing adverse pressure gradients
Attaining prescribed values of flow variables at the 
channel exit
Minimizing the entropy rise in the channel



Performance Index

Minimize
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We need a control approach that can
work for nonlinear systems
be data-based
be applicable to infinite as well as finite horizon 
problems
easily adaptable

Motivating the Cost-to-go
Approach



Motivating the Cost-to-go Approach...
Linear time invariant system:

Parameterizing,
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Modified Approach: 
Parameterize as,

Solution with a unique minimum
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Formulation of the Control 
Architecture: NN Controller

Use of the modified approach to formulate the control 
architecture
Instead of a single controller structure (G), need ‘r’ controller 
structures
Outputs of the ‘r’ controller structures, generate u(k) through 
u(k+r-1)
Parameterize the ‘r’ controller structures using an effective 
Neural Network

x(k)
Neural

Network
Controller

u(k)

u(k+1)
…
u(k+r-1)



Parameterize the cost-to-go function using a Neural Network (CGA
Neural Network)
Inputs to the CGA Network:

x(k), u(k),…,u(k+r-1)
Use the analytical model, or a computer simulation or the physical 
model to generate the future states. 
Use the ‘r’ control values and the ‘r’ future states to get the ideal 
cost-to-go function estimate.

Use this to train the CGA Neural Network

Formulation of the Control Architecture: 
NN Cost-to-go Function Approximator
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CGA Neural Network Training

Actual System
or

Simulation Model

Neural Net 
Cost-to-go

Approximator

x(k)
u(k)

+−

V(k)

Vnn(k)

Verr

Neural Network Cost-to-go Approximator Training

u(k+1)
u(k+r-1)



u(k),…,
u(k+3)

 Subnet 2

Subnet 3

 Subnet 4

 Subnet 5

 Subnet 1

 Subnet 3

Subnet 3

Subnet 4

Subnet 4

Subnet 5

Quadratic
Layerof
Neurons

x(k)

u(k)

u(k),…,u(k+4)

x(k+1)
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x(k+4)

x(k+5)

u(k+5),…,u(k+9)

u(k),…,u(k+9)

V(k)

x(k+6)

x(k+10)

u(k),
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u(k),…,
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Implementation of the Hybrid CGA Network of order ‘r 
= 10’, using trained subnets of order 1 through 5

Bringing Structure to the CGA Network



Neural Network Controller Training

Gradient of V(k) with respect to the control inputs u(k) ,…, u(k 
+ r - 1) is calculated using back-propagation through the 
‘CGA’ Neural Network.
These gradients can be further back-propagated through the 
Neural Network controller to get,                     through
Neural Network controller is trained so that
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Salient Features of the 
Formulation

Simplification of the optimization problem
Decoupled CGA network training and the controller network 
training
Introduction of structure in the CGA network
Same basic architecture for linear or nonlinear systems.
Data-based implementation - No explicit analytical model 
needed
Adaptive control architecture with the use of Neural 
Networks 



Translating the Approach to the 
MHD problem

In terms of the ‘x-t’ equivalence, the problem is time-
dependent
Optimization equivalent to the fixed end time optimal 
control
Procedure:

Defining subnets
Parameterizing and training the subnets
Arranging them together to get the cost-to-go function V(0)
Parameterizing and training the Neural Network controller



Defining and Parameterizing the Subnets
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Physical picture describing Subnet 1

Flow in Flow 
out

Continuously spaced e-beam windows 
each having a length of 1 cm
Subnet 1 chosen to correspond to the 
system dynamics between a group of 4 
e-beam windows
Length of the channel = 1 m
Need subnets upto order 25
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Training Results for Subnet 1

Testing Subnet 1, ‘∇∇∇∇ ’- Ouput value given by subnet 1, ‘οοοο ’ – Error between the 
subnet 1 output and the ideal value given by the simulation
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Training Results for Subnet 10

Testing Subnet 10, ‘∇∇∇∇ ’- Ouput value given by subnet 10, ‘οοοο ’ – Error between 
the subnet 10 output and the ideal value given by the simulation
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Building the Cost-to-go 
Approximator

Choice of the weighting coefficients 
(q11,q22,q33,p11,p22,p33)

Energy extracted-Energy used
Pressure Profile
Terminal conditions

Translation of the integral into a summation.



Testing the CGA Network
q11 =1e-3, q22 = 1e-4, q33 = 0, p11 = 1e-4, p22 = 1, p33 = 1e-2



Neural Network Controller

Choice of a single control two-layer unit or multiple (25) 
control two-layer units
Choice of number of hidden layer neurons
Training algorithm : Resilient Backpropagation
Inputs : Flow variables (density, velocity and pressure) at 
the channel inlet.
Outputs: Electron beam current for the 25 groups of e-
beam windows along the channel.



Training the Neural Network Controller
q11 =1e-4, q22 = 1e-4, q33 = 0, p11 = 0, p22 = 0, p33 = 0



Density profile along the channel, * - Constant current of 50 A/m2, - Random 
current profile, ∆ - Electron beam current profile with the Neural Network 
controller (q11 = 5*q22)



Velocity profile along the channel, * - Constant current of 50 A/m2, - Random 
current profile, ∆ - Electron beam current profile with the Neural Network 
controller (q11 = 5*q22)



Pressure profile along the channel, * - Constant current of 50 A/m2, - Random 
current profile, ∆ - Electron beam current profile with the Neural Network 
controller (q11 = 5*q22)



Electron number density profile along the channel, * - Constant current of 50 A/m2, 
- Random current profile, ∆ - Electron beam current profile with the Neural 

Network controller (q11 = 5*q22)



Temperature profile along the channel, * - Constant current of 50 A/m2, - Random 
current profile, ∆ - Electron beam current profile with the Neural Network 
controller (q11 = 5*q22)



Mach number profile along the channel, * - Constant current of 50 A/m2, -
Random current profile, ∆ - Electron beam current profile with the Neural Network 
controller (q11 = 5*q22)



Electron beam current (control) profile along the channel, * - Constant current of 50 
A/m2, - Random current profile, ∆ - Electron beam current profile with the Neural 
Network controller (q11 = 5*q22)
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Imposing Pressure Profile Penalty
q33 relatively weighs the pressure profile
Adverse pressure gradient towards the end of the channel
Choose q33 of the form:



Pressure profile along the channel, ∆ - with the NN controller (q11 = 5*q22) 
without pressure profile penalizing, O – with the NN controller (q11 = 5*q22) with 
pressure profile penalizing.



Density and velocity profiles along the channel, ∆ - with the NN controller without 
pressure profile penalizing , O - with the NN controller with pressure profile 
penalizing.



Electron number density and Temperature profiles along the channel, ∆ - with the 
NN controller without pressure profile penalizing, O – with the NN controller with 
pressure profile penalizing.



Mach number and Electron beam current profiles along the channel, ∆ - with the 
NN controller without pressure profile penalizing, O – with the NN controller with 
pressure profile penalizing.



Power Analysis

With q33 = 0
Power Extracted = 1.411 MW
Power Spent       = 88.27 kW
Ratio of Power Extracted to Power Spent = 15.99

With q33 penalizing pressure profile 
Power Extracted = 1.043 MW
Power Spent       = 40.97 kW
Ratio of Power Extracted to Power Spent = 25.47

q11 = 5,q22 = 1e-4,  p11 = 0, p22 = 0, p33 = 0



Other Interesting Cases

Minimizing the Entropy Increase
Specification of exit Mach number and Temperature
Electron beam window failures



Future Research Thoughts

Implementation of a state-feedback form of the 
controller

Using sensor information
Computational cost issue for a longer channel
Increasing the control resolution



Dynamic Programming Based 
State-Feedback Architecture

Inlet MHD Channel



Conclusions

Formulation of the problem of performance optimization of 
the MHD Generator as an optimal control problem
Implementation of the open loop architecture in terms of the 
cost-to-go approach
Successful training of the CGA and the Controller
Results for the energy extraction, energy input and the 
pressure profile terms in the cost function
Formulation of the dynamic programming based state-
feedback form of the control architecture



Acknowledgements

Dr. Mikhail Schneider, Professor Richard Miles -
Princeton University
Dr. Paul Werbos - National Science Foundation
Dr. Raymond Chase - ANSER Corporation



Conference Papers:
[1] Kulkarni, N. V. and Phan, M. Q., “Data-Based Cost-To-Go Design for Optimal 

Control,” AIAA Paper No. 2002-4668, AIAA Guidance, Navigation and 
Control Conference, Monterey, California, August 2002.

[2] Kulkarni, N. V. and Phan, M. Q., “A Neural Network Based Design of Optimal 
Controllers for Nonlinear Systems,” AIAA Paper No. 2002-4664, AIAA 
Guidance, Navigation and Control Conference, Monterey, California, August 
2002.

[3] Kulkarni, N. V. and Phan, M. Q., “Performance Optimization of the Hypersonic 
Magneto-hydrodynamic Generator at the Engine Inlet,” accepted at the 
AIAA/AAAF 11th International Space Planes and Hypersonics System and 
Technologies Conference, Orleans, France, September 2002.


